The Basics:

About Emdashes | Email us

Ask the Librarians

Best of Emdashes: Hit Parade

A Web Comic: The Wavy Rule

Features & Columns:

Headline Shooter

On the Spot

Looked Into

Sempé Fi: Cover Art

More on Grigory Perelman's refusal of the Fields Medal, as reported in this week's piece by David Gruber in *TNY*. From the magazine's press release, since the piece isn't online (actually, it is; now linked):

Also this week: In an exclusive interview, Sylvia Nasar and David Gruber report on reclusive Russian mathematician Grigory Perelman, who many believe has solved the Poincaré conjecture, “a century-old conundrum about the characteristics of three-dimensional spheres” that has come to be “regarded by mathematicians as a holy grail” (“Manifold Destiny,” p. 44). After Perelman posted a proof on the Internet—an unconventional way of publishing mathematical work of such significance—a race began to determine if he had actually proved the conjecture. Nasar and Gruber write, “A consensus was emerging in the math community: Perelman had solved the Poincaré. Even so, the proof’s complexity—and Perelman’s use of shorthand in making some of his most important claims—made it vulnerable to challenge.” Nasar and Gruber write that the prospect of being awarded a Fields Medal, math’s most prestigious prize, matters little to Perelman, who says that he plans to refuse the award. “It was completely irrelevant for me,” he tells the writers. “Everybody understood that if the proof is correct then no other recognition is needed.” Perelman declares that he has retired from the mathematics community and no longer considers himself a professional mathematician: “As long as I was not conspicuous, I had a choice. Either to make some ugly thing”—a fuss about the math community’s lack of integrity—“or, if I didn’t do this kind of thing, to be treated as a pet. Now, when I become a very conspicuous person, I cannot stay a pet and say nothing. That is why I had to quit.”

## Comments

http://www.newyorker.com/fact/content/articles/060828fa_fact2

Yes, precisely! But you’re right (at least this is how I’m interpreting your comment), I should’ve linked in the post…I shall now do so.